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The nonstationary radiative interaction of two infinite plates is con-
sidered. A numerical analysis of the thermal stabilization processes
is given.

Dynamic transfer processes, which take place very
rapidly under high temperature gradients, often mani-
fest themselves in the form of nonstationary thermal
interaction. In this type of interaction it is possible
to define the initial condition as being the moment at
which separate sections of the medium, which have
different temperature levels, come into thermal con-
tact.

The form of the thermal contact is determined by
the nature of heat transfer at the contact, and also by
the structure of the interacting media.

The simplest example of such "incomplete" thermal
contact is the nonstationary thermal interaction of two
infinite plates in a high vacuum; in this case, the main
form of heat transfer is radiation (obeying the Stefan-
Boltzmann law), and the resulting heat transfer is
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Fig. 1. Radiative interaction
of plates.

defined by the Christiansen formula [1]. In convective
heat transfer a thermal interaction occurs betweenthe
oncoming medium and the surface of the body (Newton's
law). The presence of so-called "intermittence" in the
contact region evidently tends to reduce the interaction
effect.

In the general case, the coefficient for the heat
transfer occurring in this type of interaction must be
a nonstationary characteristic of the heat-transfer
process.

However, we can expect that similar conditions are
realized either in the initial period of interaction of
the bodies or for the thermal interaction of media with
small volumes, which have specific heats of the same
order.

For this reason, a detailed analysis is given below
for the radiative interaction of twoplane-parallel plates

of finite thickness, which have different thermophy-
sical properties.

Figure 1 shows a diagram of the thermal interac-
tion between plates. The space between bodies 1 and 2
is represented arbitrarily to show that nonstationary
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Fig. 2. Thermal stabilization by
radiation: 1 and 3 apply respec-
tively to ¢, and ¢, for oy = oy;
2 and 4 apply respectively to ¢4
and g4 for gyp= 3.97 - 107 W/m? .
- deg?.
interaction takes place according to the laws govern~
ing radiative heat transfer between bodies separated
by a diathermal medium.
The statement of the problem which was considered
in [1] is written as
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and is solved rigorously by numerical analysis.



148

The formal solution to the pi‘oblem, obtained in
[1] and described in terms of the temperature in an
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Fig. 3. Effect of the dimensions of interacting
bodies on thermal stabilization: 1) Ry = R, =
= 0.1m; 2) Ry= Ry= 0.5 m.

arbitrary cross section Tj(x, ) and of the resulting
radiation density E,(0,7), has the form
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where pj = 12aj/R%(i=1,2).
On converting (4) and (5) to dimensionless form we
obtain
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The nonlinear integral equation (7), which is shown in
discrete form, reduces to a system of nonlinear alge-
braic equations in ¢(7) and is solved numerically with
Wegstein's method [2], a modification of the familiar
Newton method. The values for the dimensionless re~
sulting radiation density ¢(7) obtained in this manner
are then used in expression (6) to calculate the dimen-
sionless temperatures 6i{£, 7) in any plate cross sec-
tion. All calculations were performed on a computer.

Figure 2 shows the results obtained from calculat-
ing the dimensionless values of the resulting radiation
density @(Fo,) and the temperature 6;(Foy) as functions
of the Fourier number Fo, = (A/c4p4) (1/R?); this applies
to the case of nonstationary radiative interaction of
plates(R; = Ry = R = 0.01m, a; = A;/cyp; = 0.324 m%/hr,
T, = 300° K, ay = Ay/cypy = 0.045 m%/hr, Ty= 1500° K),
whose resulting emissivity is oy, = 5.67 - 1078 W/m? -
- deg?.

Calculation results are also given for the interaction
of the same plates but whose surfaces possess a much
lower emissitivity oy, = 3.97 - 107 W/m? - deg?. Com-
pared to the second case (curves 2 and 4), thermal
stabilization takes place within a much shorter time
interval in the first case (curves 1 and 3).
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Fig. 4. Effect of the dimensions of
interacting "thin" bodies onthermal
stabilization: 1) Ry = Ry = 0.01 m;

2) Ry = Ry = 0.05 m.

We use the results obtained to find the value of an
arbitrary coefficient of radiative heat transfer. Simi-
larly to the coefficient of convective heat transfer
(which also is a purely arbitrary concept) the coeffi-
cient of radiative heat transfer is defined by the re-
lationship :
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We use o(7) to convert the results (similar to those
obtained above) for a; = 0.612 m?/hr, Ty = 300° K, ay =
= 0.0636 m?/hr, T,= 1500° K, and 045 = gy; we then
obtain the criterial dependence Bi = f(Fo). Here Bi=
= o R/A is the Biot number, constructed with respect
to one of the interacting bodies. As is clear (Fig. 3),
there is a characteristic relationship reflecting the
decrease in values of Biy and, consequently, of ¢ for
a heated body with time (Foq). As the dimensions of
the interacting bodies increase, the thermal stabiliza-
tion processes are retarded somewhat. The nature of
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the relationship Biy = f(Foy} is unusual for relatively
"thin® bodies (Fig. 4). In this case, an extremum is
present on the curve Bij = f(Fo;), whose position shifts
toward larger Fo, as the dimension of the interacting
plates increases. This feature is due to ¢ and, con-
sequently to, Biy. It is apparently explained by "re-
flection™ of the thermal fluxes from an insulated sur-
face of the plate. This effect becomes particularly
noticeable for thin plates, as well as for plates with
high thermal conductivity.

On the whole the weak dependence of the Biot num-
ber on time in almost the entire range of the thermal
stabilization process is notable. Despite the fact that
strong radiative interaction is clearly defined in the
initial stage of thermal stabilization (see Fig. 2), the
kinetics of change in the Biot number are in the nature
of a sluggish and prolonged process. Here, the rate of
decrease in Bi; is less in the initial stage than in the
later stage.

The above discussion explains to a certain degree
why the widely used quasi~stationary methods of cal-
culating nonstationary heat transfer result in satisfac-
tory agreement with experiment.

At the same time the preliminary results presented
above provide a basis for performing more detailed
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determinations of o(t) when there is a distinct thermal
interaction.

NOTATION

ai denotes the thermal diffusivity coefficients; 7 is
the time; E; denotes the resulting radiation densities,
i= 1, 2; gyy = 0y are the resulting emissivities of the
plate; A; denotes the thermal-conductivity coefficients
for the plate; Ry denotes the plate thickness; T; is the
initial plate temperature; £ is a dimensionless co-
ordinate; 6; is the dimensionless temperature; (1) is
the dimensionless resulting radiation density; Fo; =
= (Ai/cipi)(7/R? is the Fourier number; Bi; = aiRi/A
is the Biot number.
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The temperature distribution is indicated through directly measurable
values from consideration of convection equations for the steady-state
process, The impossibility of stabilization of the interface when the
extraction rate changes is shown,

A. V. Stepanov has proposed a method for producing
articles directly from a melt [1].

Various articles made from a number of materials
are now being produced with this method [2, 3]. Which
basically is as follows. The melt column is given the
desired shape (see figure), and finished article is
obtained by crystallization of the column. The impor-
tance of calculation of the position of the crystalliza-
tion front is obvious here. This problem is also of
interest for the Czochralski method.

The thermal conditions of the process for a speci-
fied transition-boundary position are calculated in
this article in an approximation of a one-dimensional
thermal problem with convection.

The cooling schemes can vary [3]. We assume that
heat transfer occurs only due to internal thermal con-
ductivity. The coordinate system is showninthe figure.

We ignore change in the physical characteristics of
the material on either side of the phase interface.
The equations of the problem are [4]
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At the boundary, we have
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The simplest case of the stabilization problem
consists, with steady-state extraction and therefore
with a fixed interface, of maintaining the position of



